用单标准比较法测定氟化物的探讨

陈锦秀

(青海省环境监测中心站,青海 西宁 810007)

摘 要: 水中氟化物的测定, 目前主要采用《水和废水监测分析方法》中的离子选择电极法。现在推荐离子选择电极法中的另一种方法, 即单标准比较计算法。此法不需要求得电极斜率, 便能直接获得准确的分析结果, 操作简捷、省时、省力、专属性高, 在环境应急监测中具有现实意义。

关键词: 单标准比较法; 测定; 氟化物

中图分类号: X 830.2 文献标识码: B 文章编号: 1006 2009 (2000) 01-0043-02

水中氟化物的测定,目前主要采用《水和废水监测分析方法》(第三版,1989年)(以下简称《方法》)中的"离子选择电极法"。现行离子选择电极法中校准曲线法,需根据电极斜率的大小来计算样品溶液的浓度。现在推荐离子选择电极法中另一种方法,即单标准比较计算法,不需求得电极斜率,便能直接获得准确的分析结果。

1 实验部分

1.1 方法原理

单标准比较法的原理与校准曲线法相同。

- 1.2 仪器及试剂配制
- 1.2.1 仪器、器皿:同《方法》。
- 1.2.2 氟化物标准溶液: 每 mL 含 F⁻ 10.0 µg。
- 1.3 操作步骤及计算公式
- 1.3.1 操作步骤

首先测定未知样品溶液的电位 E_x , 选择校准 曲线几点中最接近未知样品氟浓度的一点为标准 点, 测定其电位 E_s (且满足 $E_x - E_s > 0$), 根据公式可计算出样品溶液的浓度。

1.3.2 计算公式

$$\log C_X = \log C_S + \frac{E_X - E_S}{S_T}$$

或者: $C_X = C_S \cdot 10^{\frac{E_X - E_S}{S_T}}$

式中: CX ——未知样品溶液的浓度(mg/L);

 C_S ——标准点溶液的浓度(mg/L);

 E_X ——未知样品溶液测得的电位(-mV):

 E_S ——标准点及电位(- mV), (且满足 $E_X - E_S > 0$);

 S_T ——特定温度 T 时的理论斜率:

1.3.3 特定温度 T 的理论斜率值计算

根据公式 $S_T = \frac{2.303 \times 10^3 RT}{nF}$ 计算出不同温度 t 时的理论斜率值, 式中: R = 8.314 焦耳/度(理想气体常数); T = 273.15 + t °C; F = 96500库仑/摩尔(法拉第常数); n 为离子价数; 计算结果见表 1。

应注意,由于电极质量,故斜率的理论值与实际值有一定的偏差。

表 1 不同温度 (t°) 下的理论斜率值

————————————————————————————————————	- 15	- 10	- 5	0	5	10	15	20	25	30	35	40
理论斜率 S_T	51. 22	52. 21	53. 20	54. 20	55. 19	56. 18	57. 17	58. 17	59. 16	60. 15	61. 14	62. 13

2 结果与讨论

2.1 两种方法对标准样品测试计算结果的比较 校准曲线法分析操作步骤均按《方法》。

在不同时间绘制 10 条校准曲线, 并用两种方法对同一标准样品进行了测试比较, 结果见表 2。

由表 2 可见: 用单标准比较法对标准样品进行测定, 其测定值均落在保证值范围内, 其相对标准偏差均小于 5%, 符合监测分析方法的要求。

收稿日期:1999-02-01;修订日期:1999-10-18

作者简介: 陈锦秀(1963-), 女, 江苏常州人, 工程师, 硕士, 已发表论文 5 篇。

表 2 两种方法对标准样品测试计算结果的比较

Ġ	取样	样品 电位 - mV		标准曲	由线法		单标准比较法				
當 体	体积 mL		r	b	a	X ₁ 样品浓度 mg/L	E_S – mV	C_S mg/ L	S_T	X ₂ 样品浓度 mg/L	
1	20	- 264	0. 999 9	58. 56	- 343. 78	1. 15	- 286	10	58. 17	1. 19	
2	20	- 255	0. 999 9	57. 75	- 334. 54	1. 19	- 260	20	59. 16	1. 21	
3	30	- 229	0. 999 8	56. 29	- 317. 34	1. 24	- 244	20	59. 16	1. 20	
4	30	- 247	0. 999 9	59. 74	- 338 36	1. 13	- 262	20	59. 16	1. 20	
5	30	- 245	0. 999 6	56. 39	- 332 95	1.21	- 260	20	58. 17	1. 21	
6	30	- 243	0. 999 2	56.08	- 329. 76	1. 16	- 258	20	59. 16	1. 20	
7	40	- 244	0. 999 9	57. 96	- 341. 07	1.18	- 260	25	59. 16	1. 17	
8	40	- 243	0. 999 9	58. 33	- 340. 69	1.18	- 265	20	59. 16	1. 18	
9	40	- 247	0. 999 2	62. 33	- 350. 51	1. 14	- 264	25	60. 15	1. 20	
10	40	- 238	0. 999 6	60. 49	- 339. 27	1. 17	- 246	35	60. 15	1. 19	
			$\overline{r} = 0.9997$	\overline{b} = 58.39	\overline{a} = - 336.	83 $\overline{x}_1 = 1.17$	5		\overline{S}_T = 59. 16	$\overline{x}_2 = 1.195$	

标样保证值: 1. 20±0. 05/中国环境监测总站标准样品)。

2.2 两种方法对实际水样测试结果的比较 先测定实际水样 Ex, 选择一标准点的氟浓度 为: $C_S = 25 \text{ mg/L}$, 测定其电位 E_S , 同时绘制校准曲线, 两种方法测定结果见表 3。

标准曲线法 单标准比较法 取样 样品 体积 电位 X1样品浓度 E_S C_S X2样品浓度 b S_T - mV amL- mV mg/L mg/L mg/L 40 - 251 57.96 - 341.074 0.89 -26125 59. 16 0.92 2 40 - 251 57.96 - 341.074 0.89 - 261 25 59. 16 0.92 - 247 - 260 3 40 57.96 - 341,074 1.05 25 59, 16 1. 04 4 40 - 246 57.96 - 341,074 1.09 - 260 25 59, 16 1. 08 5 40 - 248 57.96 - 341.074 1.01 - 261 25 59. 16 1. 04 6 40 - 246 57.96 - 341.074 1.09 - 260 25 59, 16 1. 08 7 40 -24657.96 - 341.074 1.09 - 260 25 58. 17 1.08 8 40 - 247 57.96 - 341.074 1.05 - 260 25 58. 17 1. 05 40 - 251 57.96 - 341.074 0.89 - 261 25 58.17 0.93 \overline{b} = 57. 96 $\overline{x}_2 = 1.016$ $\overline{a} = -341.074$ $\bar{x}_1 = 1.007$ $\overline{S}_T = 58.83$

表 3 两种方法对实际水样测定计算结果的比较

用两种方法对实际水样进行测试, 经 t 检验 $(t_{0.05,18}=1.277<2.306)$, 结果表明两种方法对实际水样测定计算的结果之间无显著性差异。

3 结语

通过检验和一系列测试结果分析,认为:(1)根据水样测定结果可看出,两种方法计算所得结果基本一致,符合监测分析要求;(2)单标准比较法操作简捷,省时、省力、专属性高,特别是在应急环境监测中,更具有实际意义。

[参考文献]

- [1] 国家环保局《水和废水监测分析方法》编写组.水和废水监测分析方法.第3版[M].北京:中国环境科学出版社,1989.296-299.
- [2] 陈执中等. 离子选择性电极分析法在药物分析上的应用[M]. 上海: 人民卫生出版社, 1985. 78.
- [3] 《仪器分析实验》编写组. 仪器分析实验[M]. 上海: 复旦大学出版社. 1986. 155.
- [4] 中国环境监测总站《环境水质监测质量保证手册》编写组. 环境水质监测质量保证手册.第二版[M].北京:化学工业 出版社.1994.264-266.

本栏目责任编缉 童思文