高效液相色谱 - 原子荧光光谱联用分析土壤中形态砷

顾海东 陈邵鹏 秦宏兵 (苏州市环境监测中心站 江苏 苏州 215004)

摘 要:采用高效液相色谱(HPLC) – 原子荧光光谱(AFS) 联用技术分析土壤中亚砷酸盐 [As(III)]、二甲基砷(DMA)、一甲基砷(MMA) 和砷酸盐 [As(V)]等 4 种形态砷,以磷酸为提取剂、抗坏血酸为还原剂,优化了水浴提取条件。 As(III)、DMA、MMA 和 As(V)在 7 min 之内实现了完全分离,在 $1.00~\mu g/L \sim 100~\mu g/L$ 范围内线性良好,实验室检出限分别为 $0.25~\mu g/L$ 、 $0.36~\mu g/L$ 、 $0.39~\mu g/L$ 和 $0.51~\mu g/L$,土壤标准样品平行测定的 RSD \leq 7.4%,加标回收率为 $79.5%\sim 95.0%$ 提取率为 $74.6%\sim 90.4%$ 。

关键词:砷;形态分析;高效液相色谱;原子荧光光谱;土壤

中图分类号: 0657.7⁺2; 0657.31 文献标识码: B 文章编号: 1006-2009(2012)01-0038-05

Speciation Analysis for Arsenic in Soils by HPLC-AFS

GU Hai-dong , CHEN Shao-peng , QIN Hong-bing (Suzhou Environmental Monitoring Center , Suzhou , Jiangsu 215004 , China)

Abstract: A method was established for determination of four arsenic forms such as As (\blacksquare) , methanearsenic acid (MMAV) , dimethyl arsenic acid (DMAV) and As(V) in soil samples by high performance liquid chromatography (HPLC) -hydride generation (HG) -atomic fluorescence spectrophotometry (AFS) . Phosphoric acid was used as extractive solution , Ascorbic acid as reducing agent. In optimized conditions , samples were bathed in water for extracting different arsenic forms before the determination. The four arsenic forms were separated in 7 min. The good linearity of four arsenic forms was obtained in range from 1. 00 μ g/L to 100 μ g/L , the laboratory detection limits for As (\blacksquare) 0. 25 μ g/L , DMAV 0. 36 μ g/L , MMAV 0. 39 μ g/L and As (V) 0.51 μ g/L respectively , relative standard deviation of duplicates of soil reference materials \leq 7.4% , spiked recoveries between 79.5% and 95.0% , extractive rate from 74.6% to 90.4%.

Key words: Arsenic; Morphological analysis; HPLC; AFS; Soils

砷是一种有毒并致癌的非金属元素,有许多同素异形体。目前,砷污染已成为危害十分严重的环境问题之一^[1-2],据报道,全球有至少 5 000 多万人口正面临着地方性砷中毒的威胁。随着砷矿的开采和冶炼,以及含砷农药、化肥等农资产品的过量使用,土壤中砷元素不断累积,严重影响植物、动物的生长和发育,并且通过食物链进入人体,对人类的生存和健康构成严重威胁^[3]。此外,由于砷化合物被广泛应用于建材、化工和制药等领域,砷已被列为重要环境检测对象之一^[4-5]。近代研究表明,砷在环境中的效应并不取决于其总量,而是取决于其存在的形态^[6-7]。在砷的诸多形态中,以

无机砷的毒性最大,其中三价砷化合物比五价砷化合物毒性更强,而有机砷毒性较小。因此,土壤中不同形态砷含量的监测已成为砷污染防治研究的重点之一。

目前,对土壤中砷形态的研究报道相对较少,一方面是由于土壤体系极为复杂,其中的待测污染物砷具有提取难、浓度低和价态易变等特点;另一方面,石墨炉原子吸收法、分光光度法、高效液相色

收稿日期:2011-04-21;修订日期:2011-11-21

基金项目: 江苏省环境监测科研基金资助项目(1006)

作者简介: 顾海东(1973—) ,男 ,江苏大丰人 ,高级工程师 ,本 科 ,主要从事环境污染物监测与科研工作。 谱 - 原子吸收联用法等检测灵敏度不高^[8-9] ,而电感耦合等离子体质谱法^[10-12] 虽然检测灵敏度高,但设备昂贵,使用成本高,难以普及。

今利用磷酸作为提取剂。借助高效液相色谱对砷不同形态良好的分离能力。结合原子荧光光谱检测器对砷专属响应的特点。建立了高效液相色谱 -原子荧光光谱联用检测土壤中砷形态的方法。该方法具有提取效率较高、灵敏度高、操作简单、使用成本低等优势。适合于土壤中不同形态砷的分析。

1 试验

1.1 主要仪器与试剂

AFS-9700 型双道原子荧光光度计 ,北京吉天 仪器有限公司; 高性能砷空心阴极灯 ,北京有色金属研究总院; LC-20AT 型高效液相色谱泵 ,配自动进样阀($100~\mu L$,10~AT) ,日本岛津公司; PRPX-100 阴离子交换柱($250~mm \times 4.6~mm$,30~cm) ,美国 Hamilton 公司。

氫气(99.999%);硼氢化钾、盐酸、氢氧化钠、磷酸氢二钠、磷酸二氢钾,均为优级纯;砷标准物质:亚砷酸盐(GBW 08666) [AsO $_3^{3-}$,(0.335 ± 0.011) μmol/g],砷酸盐(GBW 08667) [AsO $_4^{3-}$,(0.233 ± 0.005) μmol/g],一甲基砷(GBW 08668) [CH $_3$ AsO $_3^{-}$,(0.335 ± 0.011) μmol/g],二甲基砷(GBW 08669) [C $_2$ H $_7$ AsO $_2$,(0.706 ± 0.024) μmol/g],均购自国家标准物质中心;试验用水为去离子水经Milli – Q 装置纯化(电阻率 > 18 MΩ);所有玻璃仪器(分液漏斗和试管)均用 5% 盐酸溶液浸泡 24 h以上。

流动相(磷酸盐缓冲溶液)的配制:分别准确称取磷酸氢二钠 0.895 4 g 和磷酸二氢钾 3.026 g溶解于纯水,置于500 mL容量瓶中,用纯水稀释至刻线,摇匀,使用前经 0.45 μm 微孔滤膜抽滤,超声波脱气。

提取剂的配制: 选择磷酸作为提取剂 ,配制浓度分别为 0.3 mol/L、0.6 mol/L 和 1.0 mol/L ,pH 值分别为 1.30、1.08 和 0.90。

1.2 仪器测量参数

流动相为 $1.79~{\rm g/L}$ 磷酸氢二钠溶液 $+6.05~{\rm g/L}$ 磷酸二氢钾溶液; 流量 $1.0~{\rm mL/min}$; 在线还原剂为 $0.12~{\rm mol/L}$ 抗坏血酸溶液; 氢化物发生还原剂为 $20~{\rm g/L}$ 硼氢化钾溶液 $+3.5~{\rm g/L}$ 氢氧化钠溶液; 载流为 7% 盐酸溶液; 灯电流 $80~{\rm mA}$; 载气流量 $300~{\rm mL/min}$; PMT 负高压 $320~{\rm V}$; 进样体积 $100~{\rm \mu L}$.

1.3 试验方法

准确称取 0.400~0~g 土壤样品 ,置于 50~mL 三 颈烧瓶中 加入 20~mL 磷酸 ,于 $100~^{\circ}$ 水浴中加热 3~h ,冷却至室温后在 2~500~r/min 下离心分离 20~min 取上层清液 ,经 $0.45~\mu m$ 滤膜过滤后直接 进样检测。

2 结果与讨论

2.1 提取条件优化

分别考察柠檬酸铵 - 盐酸、草酸铵、磷酸、磷酸盐、碳酸钠、碳酸氢钠对土壤中砷形态的提取效果,结果表明磷酸的提取效果最佳。因此,该试验选择磷酸作为提取剂,并通过水浴法建立了土壤中砷形态的提取方法。

借助水浴法提取土壤中不同形态的砷时,涉及多种试验因素,如提取次数、提取时间、提取温度等。为减少试验次数,提高检测效率,采用正交试验设计方法,获得砷形态提取的最佳条件。采用 $L_9(3^4)$ 正交水平表进行试验设计,以提取的砷形态总和作为监控指标,考察提取剂浓度、提取时间、提取次数、提取温度等 4 种因素对结果的影响。 根据设计的正交试验 按上述方法对土壤标准样品 ESS -4 [保证值(11.4 \pm 0.7) μ g/g]中的砷形态提取和测定 结果见表 1。

表 1 土壤中砷形态提取的正交试验设计及试验结果

Table 1 Orthogonal test design and test results for extraction of arsenic in soils

试验	试验因素			试验结果					
次数	磷酸浓度	提取时间	提取次数	提取温度	As(III)	DMA	MMA	As(V)	提取率
八致	$c/(\text{ mol } \bullet \text{ L}^{-1})$	t/h	n/次	θ /°C	w/(μg • g ⁻¹)	1%			
1	0.3	1	1	100	_	_	_	5.31	49.6
2	0.3	2	2	80	_	_	_	4.41	41.2
3	0.3	3	3	60	_	_	_	4.55	42.5
4	0.6	1	2	60	_	_	_	5.93	55.4

ム土	#
经	マ

试验	试验因素			试验结果					
	磷酸浓度	提取时间	提取次数	提取温度	As(III)	DMA	MMA	As(V)	提取率
次数	$c/(\text{ mol } \bullet \text{ L}^{-1})$	t/h	n/次	θ /°C	w/(μg • g ⁻¹)	1%			
5	0.6	2	3	100	_	_	_	7.15	66.8
6	0.6	3	1	80	_	_	_	6.25	58.4
7	1.0	1	3	80	_	_	_	8.30	77.6
8	1.0	2	1	60	_	_	_	7.75	72.4
9	1.0	3	2	100	_	_	_	9.14	85.4

由表 1 可见 样品中被提取的砷主要以无机态的 As(V) 存在 未检测到 DMA 和 MMA 这两种有机砷 表明土壤样品中的砷主要以无机态形式存在 与大多数文献的报道结果一致。试验还发现,提取条件的改变对砷提取率的影响较大。当提取剂浓度增加时 提取率有较大幅度的提高; 延长提取时间或增加提取次数 ,提取率变化不明显; 当提高提取温度时 ,提取效率也有微弱的增加。基于此,以提取率作为考察指标 利用极差分析 探讨影响提取率的主要因素。正交试验极差分析结果见表 2。

表 2 正交试验极差分析结果

Table 2 Analysis results of range from orthogonal test

	试验因素					
水平	磷酸浓度	提取时间 提取次数		提取温度		
	(A)	(B)	(C)	(D)		
I	44.433	60.867	60.133	67.267		
${\rm I\hspace{1em}I}$	60.200	60.133	60.667	59.067		
Ш	78.467	62.100	62.300	56.767		
极差(R)	34.034	1.967	2.167	10.500		

由表 2 可见 影响提取效率的因素依次为提取 剂浓度 > 提取温度 > 提取次数 > 提取时间。因此, 提取剂浓度是影响提取效率的最主要因素。综合 表 1 和表 2 的结果 ,该试验确定最佳提取条件为: 磷酸浓度 1.0 mol/L; 提取时间 3 h; 提取次数为 2 次; 提取温度 100~%。

2.2 还原剂的选择

在采用优化的试验条件分析土壤标准样品 ESS-4 时 发现在提取过程中 As(Ⅲ) 和 As(V) 之间发生了明显的形态转化,大部分 As(Ⅲ)被氧 化成 As(V)。该现象可能是由于基质影响所导 致 因而在上述优化条件下的试验结果并不能真实 反映土壤中各种砷形态的相对含量 需要在提取试 验中添加还原剂。常用的还原剂包括碘化钾、抗坏 血酸、L-半胱氨酸等。以两种无机砷的回收率作 为参考指标 考察了抗坏血酸和碘化钾对试验结果 的影响。以不同浓度的抗坏血酸和不同质量浓度 的碘化钾作为还原剂 As(Ⅲ)和 As(V)的加标回 收率结果见图 1(a)(b)。由图 1 可见 随着抗坏血 酸浓度和碘化钾质量浓度的增加 ,As(Ⅲ) 的回收 率逐步提高并趋于稳定 ,As(V) 的回收率逐步降 低并最终趋于稳定: 当选择抗坏血酸作为还原剂 时,回收率明显好于碘化钾,无机砷的回收率在 80%~110%之间。因此,该试验选择0.12 mol/L 抗坏血酸溶液作为还原剂。

图 1 还原剂对无机砷回收率的影响

Fig. 1 Effect on inorganic arsenic recovery by reducing agent

2.3 标准谱图

采用 PRPX - 100 阴离子交换柱对砷的形态进行分离 选取磷酸盐缓冲溶液(pH 值为 6.0) 作为流动相。在优化的色谱条件下 .砷混合标准溶液的色谱峰见图 2。在 7 min 之内 ,As(Ⅲ)、DMA、MMA和 As(V)可实现完全分离 峰形对称 .保留时间分别为 2.564 min、3.150 min、3.964 min和6.480 min。

图 2 标准溶液中 4 种砷的形态色谱峰

Fig. 2 Chromatograms of 4 kinds of arsenic forms in standard solution

2.4 线性范围

配制 1. 00 μ g/L、10. 0 μ g/L、20. 0 μ g/L、40. 0 μ g/L、60. 0 μ g/L、80. 0 μ g/L、100 μ g/L 4 种形态砷的混合标准溶液 ,用该方法测定 ,以质量浓度对应峰面积绘制标准曲线 A 种形态砷均呈现良好的线性关系 ,回归方程与相关系数见表 3。

重复测定 $1.00 \mu g/L 4$ 种形态砷的混合标准溶液 5 次 ,计算其色谱峰面积的相对标准偏差 (RSD) 结果见表 3 。

2.5 实验室检出限(MDL)

连续分析 7 个接近于检出限的实验室空白加标样品,计算其标准偏差s,根据 $MDL = s \times t_{(n-1,0.99)}$ 计算 4 种形态砷的实验室检出限,结果见表 4。

表 3 4 种形态砷的标准曲线

Table 3 Calibration curve of 4 kinds of arsenic forms

组分	线性范围 ρ/(μg • L ⁻¹)	回归方程	相关系数 R	RSD/%
As(III)	1.00 ~100	$y = 2.44 \times 10^4 x + 8.70 \times 10^4$	0.999 2	5.4
DMA	1.00 ~100	$y = 2.27 \times 10^4 x + 1.26 \times 10^4$	0.999 2	4.1
MMA	1.00 ~ 100	$y = 2.26 \times 10^4 x + 1.79 \times 10^4$	0.9994	4.6
As(V)	1.00 ~100	$y = 1.47 \times 10^4 x + 801$	0.999 5	5.0

表 4 4 种形态砷的实验室检出限

Table 4 Laboratory detection limits of 4 kinds

of arsenic forms

组分	添加质量浓度		MDL	加标样测定
	ρ/(μg • L ⁻¹)	/(μg • L ⁻¹)	/(μg • L ⁻¹)	均值/MDL
As(III)	3.00	0.081	0.25	3.8
DMA	3.00	0.115	0.36	4.2
MMA	3.00	0.124	0.39	4.7
As(V)	3.00	0.159	0.51	4.6

2.6 精密度与加标回收试验

在最佳水浴提取条件下,用该方法对土壤标准样品 ESS - 4 做精密度与加标回收试验(n=5),结果见表 5。由表 5 可见 A 种形态砷平行测定的 RSD \leq 7.4%,回收率在 79.5% \sim 95.0% 之间,表明提取方法和检测方法均可行。

表 5 精密度与加标回收试验结果

Table 5 Test results of precision and spiked recovery

组分	As(Ⅲ)	DMA	MMA	As(V)
- 实测均值 w/(μg • g ⁻¹)	0.44	_	_	10.1
RSD/%	4.6	0	0	1.6
加标值 w/(μg • g ⁻¹)	2.00	3.00	3.00	5.00
加标后测定均值 w/(μg • g ⁻¹)	2.03	2.85	2.84	14.6
RSD/%	7.4	2.7	2.7	1.2
平均回收率/%	79.5	95.0	94.7	90.0

2.7 土壤标准样品分析

用该方法分析 4 种土壤标准样品(ESS – 1、ESS – 2、ESS – 3、ESS – 4) 中的砷形态 结果见表 6。由表 6 可见 μ 种样品砷的提取率在 μ 74.6% ~ 90.4% 之间 ,提取效率较高;各种形态砷的加标回收率在 μ 78.0% ~ 123% 之间,表明建立的分析方法可行且可靠。

表 6 土壤标准样品分析结果

Table 6 Test results of soil reference materials

	As(III)	DMA	MMA	As(V)
	1.52			6.46
加标值 w/(μg • g ⁻¹)	1.02	5.	00	00
加标后测定值 w/(μg • g ⁻¹) 6.26		4.51	12.0
回收率/%	94.8	84.2	90.2	111
$\sum \text{As } w/(\mu g \cdot g^{-1})$		7.	98	
保证值 w / (μg • g ⁻¹)		10.7	±0.8	
提取率/%		74	1.6	
ESS - 2 实测值 w/(μg • g ⁻¹)	0.82	_	_	7.13
加标值 w/(μg • g ⁻¹)		4.	00	
加标后测定值 w/(μg • g -1) 4.61	3.43	3.61	11.3
回收率/%	94.8	85.8	90.2	104
$\sum \text{As } w/(\mu g \cdot g^{-1})$		7.	95	
保证值 w/(μg • g ⁻¹)		10.0	±1.0	
提取率/%		79	9.5	
ESS - 3 实测值 w/(μg • g ⁻¹)	2.64	_	_	10.7
加标值 w/(μg • g ^{- 1})		6.	00	
加标后测定值 w/(μg • g ⁻¹) 7.89	5.21	5.52	18.1
回收率/%	87.5	86.8	92.0	123
$\sum \mathrm{As} \ w/(\ \mu\mathrm{g} \cdot \mathrm{g}^{-1})$		13	3.3	
保证值 w/(μg • g ^{- 1})		15.9	± 1.3	
提取率/%		83	3.6	
ESS-4 实测值 w/(μg • g ⁻¹)	0.41	_	_	9.88
加标值 w/(μg • g ⁻¹)	2.00	3.00	3.00	5.00
加标后测定值 w/(μg • g ⁻¹) 1.97	2.64	2.76	14.4
回收率/%	78.0	88.0	92.0	90.4
$\sum \mathrm{As}\ w/(\ \mu\mathrm{g}\ ^{\bullet}\ \mathrm{g}^{-1})$		10). 3	
保证值 w/(μg • g ⁻¹)		11.4	± 0.7	
提取率/%		90). 4	

3 结语

利用高效液相色谱 - 原子荧光光谱联用技术分析土壤样品中 As(Ⅲ)、DMA、MMA 和 As(V) 等4 种形态砷,方法前处理简单,提取效率高,回收率稳定,灵敏度和准确度高,杂质干扰少,检测成本低,便于在普通实验室应用。

[参考文献]

- [1] THORESBY P, THORNTON I. Heavy metals and arsenic in soil, pasture herbage and barley in some ineralised areas in Britain: significance to animal and human health [M]// HEMPHILL D D. Trace substances in environmental health VIII. Missouri: Universi of Missouri Columbia 1979: 93 103.
- [2] WHO. Arsenic environmental health criteria 18 [R]. Geneva: World Health Organization ,1981.
- [3] MANDAL B K SUZUKI K T. Arsenic round the world: A review [J]. Talanta 2002 58: 201 235.
- [4] 国家环境保护总局《水和废水监测分析方法》编委会. 水和废水监测分析方法 [M]. 4 版增补版. 北京: 中国环境科学出版社 2002.
- [5] 朱宇芳. 微波消解 氢化物发生原子荧光法测定植物中汞和砷[J]. 环境监测管理与技术 2009 21(3):52-53.
- [6] SADIQ M. Arsenic chemistry in soils: An overview of thermodynamic predictions and field observations [J]. Water, Air, Soil Poilution, 1997, 93:117-136.
- [7] 刘芃岩 温春辉 冯关涛 等. 微波消解 原子荧光光谱法同时测定白洋淀芦苇中砷和镉[J]. 环境监测管理与技术, 2008 20(6):41 42.
- [8] 张磊,吴永宁,赵云峰,不同形态砷化合物稳定性研究和砷形态分析中样品前处理技术[J].国外医学:卫生学分册,2007,34(4):238-244.
- [9] 郝春莉,王庚,余晶晶,等. 15 种中药材中砷的形态分析 [J].分析测试学报 2009 28(8):918-921.
- [10] TOWNSEND A T ,SULLIVAN J O ,FEATHERSTONE A M ,et a1. Sampling and analysis for arsenic dissolved in groundwater and surface water [J]. J. Environ Monit ,2001 ,21(3): 113 -120.
- [11] FENG Y L ,CHEN H Y ,TIAN L C ,et al. Off-line separation and determination of inorganic arsenic species in natural water by high resolution inductively coupled plasma mass spectrome try with hydride generation combined with reaction of arsenic (V) and lcysteine [J]. Anal Chim Acta ,1998 ,75 (9): 167 -175
- [12] MANONMANIIK ,WU H J ,ROBYN M ,et al. Urinary arsenic methylation and porphyrin profile of C57BI/6J mice-chronically exposed to sodium arsenate [J]. Science of Environment ,1999 , 20(4):79 – 84.

敬告读者•作者

本刊自 2012 年 1 月起启用在线投稿系统。网址为: http://hjjcgl.cnjournals.net 欢迎使用。原投稿信箱: hjjs@ chinajournal.net.cn 继续使用 3 个月。