微波消解 - 原子荧光法测定土壤中汞、砷、硒

许建华,田锋,杜青,任兰,陈妍妍 (南京市环境监测中心站,江苏 南京 210013)

摘 要:建立了微波消解 - 原子荧光法测定土壤中汞、砷、硒的方法。汞在 0 00 μ g/L ~ 1.00 μ g/L、砷在 0 00 μ g/L ~ 10 0 μ g/L、硒在 0 00 μ g/L ~ 2 00 μ g/L 之间线性关系良好,以称样 0 200 0 g计,检出限汞为 0 005 mg/kg,砷为 0 009 mg/kg,硒为 0 005 mg/kg,经国家有证标准物质验证,方法精密度与准确度均能满足土壤环境样品的测试要求。

关键词:汞;砷;硒;土壤;原子荧光法;微波消解

中图分类号: 657. 31 文献标识码: B 文章编号: 1006-2009(2007)04 - 0034 - 02

在自然环境中,汞、砷、硒的含量一般处于微量和痕量级水平^[1]。氢化物发生 - 原子荧光光谱法 (HG - AFS)灵敏度高,检出限低,仪器价格相对较低,操作简单,分析成本低^[2-5],结合微波酸融消解处理样品,适合土壤样品中汞、砷、硒的测定。

1 试验

1.1 主要仪器与试剂

AFS - 3100型双道原子荧光光度计,北京科创海光仪器有限公司; ETHOSD型微波消解仪,意大利麦尔斯通公司。

汞、砷、硒标准溶液,国家环保总局标准物质研究所,标准号分别为 GSB 07 - 1274 - 2000、GSB 07 - 1275 - 2000、GSB 07 - 1273 - 2000;过氧化氢溶液,分析纯;0. 75 g/L 硼氢化钾溶液,用 5 g/L 氢氧化钾溶液配制,用作汞测定载液;30 g/L 硼氢化钾溶液,用 5 g/L 氢氧化钾溶液配制,用作砷、硒测定载液;50 g/L 硫脲溶液,用 50 g/L 抗坏血酸溶液配制;50 g/L 酒石酸溶液;1. 0 g/L 氯化铁溶液,用盐酸配制:盐酸、硝酸、优级纯。

1.2 样品前处理

土壤样品风干后,通过 2 mm 尼龙筛,混匀,再 用玛瑙研钵将其研磨至全部通过 100目尼龙筛,混 匀后备用。

准确称取 0 200 0 g~0 500 0 g土壤样品于消解内罐中,依次加入硝酸 6 mL、盐酸 2 mL、过氧化氢溶液 2 mL,待罐内气泡消除后加盖旋紧,放入微波消解仪。按程序升温,消解内罐温度经 15 min由室温升至 180 ,再经 5 min升至 200 并保持10 min。加热完成,待消解罐冷却至室温后打开,

将消解液移入 50 mL 比色管中,用 50 g/L 酒石酸溶液定容,摇匀后静置备用^[6]。

1.3 样品测定

汞:移取 5.0 mL 澄清消解样于 10 mL 比色管中,加入 1.0 mL 50%王水,用去离子水定容,混匀后待测;砷:移取 5.0 mL 澄清消解样于 10 mL 比色管中,加入 1.5 mL盐酸、2.5 mL 50 g/L硫脲溶液,用去离子水定容,摇匀放置 20 min后测定;硒:移取 5.0 mL 澄清消解样于 10 mL 比色管中,加入 1.5 mL盐酸、1.0 mL 1.0 g/L氯化铁溶液,用去离子水定容.混匀后待测。

2 结果与讨论

2.1 方法线性

分别移取 25. 0 μ g/L 汞标准溶液 0 mL ~ 4.0 mL于 100 mL容量瓶中,加入 50%王水 5 mL, 用去离子水定容,配制成 0.00 μ g/L ~ 1.00 μ g/L 汞标准溶液系列。

分别移取 100 μ g/L 砷标准溶液 0 mL ~ 10.0 mL于 100 mL容量瓶中,加入 15.0 mL盐酸、25.0 mL 50 g/L硫脲溶液,用去离子水定容,配制成 0.00 μ g/L ~ 10.0 μ g/L 砷标准溶液系列。

分别移取 $100 \mu g/L$ 硒标准溶液 $0 mL \sim 2.0 mL$ 于 100 mL容量瓶中,加入 15.0 mL盐酸、10.0 mL 1.0 g/L氯化铁溶液,用去离子水定容,配制成 $0.00 \mu g/L \sim 2.00 \mu g/L$ 砷标准溶液系列。

在上述条件下分别测定汞、砷、硒标准溶液系

收稿日期: 2007 - 04 - 26;修订日期: 2007 - 06 - 26

作者简介:许建华(1962—),男,江苏南通人,高级工程师,大学,从事环境监测工作。

列,线性关系均良好。汞标准曲线为 y = 3 029. 6x +4 09, r = 0 999 9; 砷标准曲线为 y = 188 07x + 19. 22, r = 0 999 9; 硒标准曲线为 y = 75 64x + 6 20, r = 0 999 4。

2 2 方法检出限

在 95%置信度下,能检出与背景空白值相区别的最小测量信号值为方法检出限。测定 10个空白,计算 10次空白响应信号的标准偏差,以称样 0. 200 0 g计,检出限汞为 0. 005 mg/kg,砷为 0. 009 mg/kg,硒为 0. 025 mg/kg。

2.3 精密度

仪器测量精密度以 0.5 的标准溶液重复测

定的 RSD表示 (见表 1),方法精密度以国家有证标准物质重复测定的 RSD表示 (见表 2)。

表 1 仪器测量精密度 (n=6)

元素	汞	砷	硒
测定均值 /(µg·L ⁻¹)	0. 505	5. 02	0. 986
标准偏差 /(µg·L ⁻¹)	0. 010	0.06	0. 029
RSD/%	2. 2	1. 3	2.9

2.4 准确度

国家有证标准物质土壤 GSS - 9和沉积物 GSD - 9的测定结果见表 2。

表 2 标准物质测定结果 (n=5)

元素	GSS - 9			GSD - 9		
	汞	砷	硒	汞	砷	硒
测定值 /(mg·kg ⁻¹)	0. 032	7. 80	0. 148	0. 077	8. 21	0. 135
	0. 029	8. 12	0. 125	0. 077	8. 14	0. 134
	0. 029	7. 93	0. 147	0. 085	8. 19	0. 142
	0. 030	8. 10	0. 150	0. 082	8. 23	0. 152
	0. 031	8. 23	0. 152	0. 080	8. 41	0. 140
测定均值 /(mg·kg ⁻¹)	0. 030	8. 04	0. 144	0. 080	8. 24	0. 141
RSD/%	3. 3	2.1	7. 6	3. 8	1. 2	7. 1
保证值 /(mg·kg ⁻¹)	0. 032 ±0. 003	8. 4 ±1. 3	0. 15 ±0. 03	0. 083 ±0. 009	8. 4 ±0. 9	0. 16 ±0. 0

3 结论

采用微波消解 - 原子荧光法测定土壤中汞、砷、硒,样品预处理快捷,微波酸融消解技术先进,消解过程用酸量少,密闭方式酸融对环境污染小。经国家有证标准物质验证,该方法测定准确度能够满足环境样品的测试要求,适宜在土壤环境监测中推广使用。

[参考文献]

- [1] 国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法 [M].4版.北京:中国环境科学出版社, 2002:309-311.
- [2] 殷学锋,张建君,王小芳.顺序注射氢化物发生原子吸收法测定砷[J].分析化学,2004,33(10):97-99.

- [3] 赵振平,张怀成,冷家峰,等.王水消解蒸气发生-原子荧光 光谱法测定土壤中的砷、锑和汞[J].中国环境监测,2004,20 (1):46-48.
- [4] 区域性地球化学样品测试质量专家检查组. 2002年区域性 地球化学样品测试质量排序通报 [J]. 物探与化探, 2003, 25
- [5] 时岚,叶国英. 流动注射 氢化物发生 原子荧光光谱法测定土壤中铅 [J]. 环境监测管理与技术, 2006, 18(3): 26 27.
- [6] US EPA Office of Solid Waste. Method 3052 microwave assisted acid digestion of siliceous and organically based matrices 1. 0 scope and application 1. 1 [S/OL]. Washington DC: US Environmental Protection Agency, 2003. http://www.epa.gov/SW-846/pdfs/3052.pdf

本栏目责任编辑 姚朝英

·简讯 ·

江苏省将调整排污费征收标准

为实现江苏省"十一五"生要污染物减排目标任务的全面完成,建立健全"排污者付费,治污者受益"的环境价格机制,江苏省自 2007年 7月 1日起提高排污费征收标准。调整后的排污费征收标准分别为:废气排污费征收标准由 0.6元 污染当量提高到 1.2元 污染当量,其中二氧化硫由 0.63元 /kg提高到 1.26元 /kg污水排污费征收标准由 0.7元 污染当量提高到 0.9元 污染当量,其中化学需氧量 0.9元 /kg。同时,根据年度减排目标完成情况、企业承受能力,择机分步调整到 1.4元 污染当量。 摘自 www. jshb gov cn 2007年 6月 28日

— 35 **—**