水污染事故中半挥发性有机物应急监测方法研究

吕天峰 张宝 滕恩江 吕怡兵

(中国环境监测总站,北京 100012)

摘 要: 建立了车载式气相色谱/质谱联用仪(GC/MS) 结合固相微萃取(SPME) 前处理技术测定水体中半挥发性有机物(SVOCs) 的方法 优化了萃取头类型、萃取温度与萃取时间、离子强度、解吸温度与解吸时间、搅拌速度等影响萃取效率的因素 以及仪器分析条件。24 种 SVOCs、7 种 OPPs 和 17 种 OCPs 在 $1.00~\mu g/L \sim 40.0~\mu g/L$ 范围内线性良好 检出限为 $0.11~\mu g/L \sim 0.39~\mu g/L$ 空白加标水样平行测定的 RSD $\leq 14.3\%~$ 回收率为 $51.0\%~ \sim 98.5\%$ 。

关键词: 半挥发性有机物; 车载式气相色谱/质谱联用仪; 固相微萃取; 应急监测; 水质中图分类号: 0657.63 文献标识码: B 文章编号: 1006 - 2009(2013)02 - 0038 - 05

The Research on the Method for Emergency Monitoring of Semi-volatile Organic Compounds in Water Pollution Accidents

LV Tian-feng , ZHANG Bao , TENG En-jiang , LV Yi-bing (China National Environmental Monitoring Centre , Beijing 100012 , China)

Abstract: A new method for transportable gas chromatography and mass spectrometry (GC/MS) with solid–phase micro-extraction (SPME) technology was established in order to analyze semi-volatile organic compounds in water. Several parameters was studied and optimized: such as SPME fiber , extraction temperature , extraction time , ion intensity , thermal desorption temperature and time , stirring rate and so on. Under optimal conditions , the method possesses good linear range ($1.00~\mu g/L \sim 40.0~\mu g/L)$, low detection limit ($0.11~\mu g/L \sim 0.39~\mu g/L)$, good analytic precision ($RSD \! \leq \! 14.3\%$) and excellent accuracy (the average recoveries were between 51.0% and 98.5%) . The method was able to qualitatively and quantitatively analyze 24 kinds of SVOCs , 7 kinds of OPPs ,17 kinds of OCPs in water quickly and effectively. It is suitable for environment emergency monitoring for analysis of SVOCs in water.

Key words: Semi-volatile organic compounds; Transportable GC/MS; Solid-phase micro-extraction; Emergency monitoring; Water quality

随着我国经济增长,化工行业发展迅速,有机化工产品种类和数量与日俱增。由于生产管理不善及运输等原因,在生产、运输和使用过程中半挥发性有机物($SVOC_s$) 所导致的水污染事故频有发生 $^{[1-2]}$ 。 $SVOC_s$ 指沸点在 170~%~350~%、蒸气压在 10^{-5} Pa ~13.3 Pa 的一类有机物,主要包含分子量较大的烷烃、醛类、酸、酯、多环芳烃、多氯联苯、有机磷农药、有机氯农药等。 $SVOC_s$ 具有高度的化学、物理和生物学稳定性,对皮肤、眼睛、黏膜等均有刺激作用,有的甚至具有基因毒性和致癌性,严重影响人体健康。因此,当污染事故发生后,迅

速有效地开展现场监测 在尽可能短的时间内判断 出污染物的种类、浓度、影响范围及可能造成的危 害 是进行有效应急处置的前提。

目前针对 SVOCs 的应急监测主要采用实验室分析和现场监测两种方式。实验室分析[3-8] 能够对 SVOCs 准确定性和定量 ,但需要样品运输、保存等多个中间环节 ,出具的数据缺少时效性 ,影响了应急事故的及时有效处置。现场监测主要使用便

收稿日期: 2012 - 05 - 08; 修订日期: 2013 - 01 - 30

作者简介: 吕天峰(1981—) ,男 ,河北石家庄人 ,工程师 ,硕士 , 主要从事环境应急监测技术及分析方法研究。 携式气相色谱 采用保留时间定性 ,在相同的实验条件下将待测物与标准物进行图谱比对。因此 现场分析需要大量标准物质 ,当面对种类繁多的未知组分的有毒有机物时 ,现场定性比较困难。

车载式气相色谱/质谱联用仪(GC/MS)体积小 能耗低 具备较强的可移动性 将气相色谱的高分辨能力和质谱检测器的定性能力相结合 能用于污染事故的现场分析。固相微萃取(SPME)^[9-14]集萃取、浓缩、进样为一体 与其他传统样品前处理技术(如液液萃取、固相萃取等)相比 克服了操作复杂、耗时长、有毒有机溶剂对人体侵害等缺点 与车载式 GC/MS 结合 具有操作简便、快速、灵敏度高、无需有机溶剂等特点。今建立了车载式 GC/MS 结合 SPME 前处理技术测定 SVOCs 的方法 能快速、有效地对水体中 48 种 SVOCs 定性和定量,满足了环境应急监测工作的需要。

1 试验

1.1 主要仪器与试剂

GRIFFIN 450 型车载式气相色谱/质谱联用仪 美国 GRIFFIN 公司; DB – 5MS 色谱柱(30 m × 0.32 mm×1 μ m); 载气为高纯氦气(99.999%); SPME 手柄及萃取头: 100 μ m 聚二甲基硅氧烷(PDMS)纤维头,70 μ m PDMS 纤维头,65 μ m 高度交联聚乙二醇 – 二乙烯基苯(PEG – DVB)纤维头,85 μ m 聚丙烯酸酯(PA)纤维头,美国 SUPELCO 公司; DF – 101S 型集热式恒温加热磁力搅拌器,郑州市杜甫仪器厂;40 mL 顶空瓶(内衬聚四氟乙烯膜的硅橡胶垫)美国 SUPELCO 公司。

24 种 SVOCs 混合标准溶液(500~mg/L) ,7 种 有机磷农药(OPPs) 混合标准溶液(2~000~mg/L) ,17 种 有 机 氯 农 药 (OCPs) 混 合 标 准 溶 液 (2~000~mg/L) ,百灵威公司; 正己烷(农残级);氯 化钠(分析纯);不含有机物的超纯水。

1.2 仪器分析条件

色谱条件:

24 种 SVOCs: 直接进样 ,进样口温度 250 °C; 溶剂延迟 5 min; 进样体积 1 μL; 初始柱温 60 °C (保持 3 min ,前 2 min 不分流 ,后 1 min 20% 分流) 以 10 °C /min 升至 130 °C ,以 15 °C /min 升至 200 °C ,再以 40 °C /min 升至 275 °C。

7 种 OPPs: 直接进样 进样口温度 250 ℃; 溶剂 延迟 4 min; 进样体积 1 μ L; 初始柱温 70 ∞ (保持

2 min 不分流),以 50 ℃/min 升至 220 ℃(保持 1 min) 再以 15 ℃/min 升至 250 ℃(保持 1 min)。

17 种 OCPs: 直接进样 ,进样口温度 250 ℃; 溶剂延迟 4 min; 进样体积 1 μ L; 初始柱温 100 ℃ (保持 2 min 不分流) 以 50 $^{\circ}$ C /min 升至 220 $^{\circ}$ C (保持 1 min) ,以 15 $^{\circ}$ C /min 升至 240 $^{\circ}$ C (保持 4 min) ,再以 50 $^{\circ}$ C /min 升至 260 $^{\circ}$ C (保持 2 min) 。

质谱条件: EI 源; 电子能量 70 eV; 全扫描方式 扫描范围 50 u ~ 425 u; 离子阱温度 150 $^{\circ}$ 。

1.3 样品分析

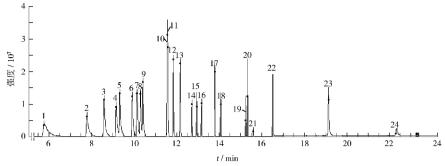
纤维头首次使用前 ,需于 300 $^{\circ}$ C活化 3 h。取 30 mL 水样于顶空瓶中 ,放入磁转子 ,加氯化钠至饱和 插入萃取针(纤维浸入并处于中心) ,水浴控温 50 $^{\circ}$ C 磁力搅拌 30 min(搅拌速度 500 r/min) 。 萃取结束 ,退出纤维 ,拔出萃取针 ,在车载式 GC/MS 进样口解析 5 min ,解析温度为 250 $^{\circ}$ C 。

2 结果与讨论

2.1 标准物质的分离情况

在试验选定的条件下分别测定 24 种 SVOCs、7 种 OPPs 和 17 种 OCPs 混合标准溶液 ,各化合物都能得到良好的分离 ,见图 1 一图 3 。

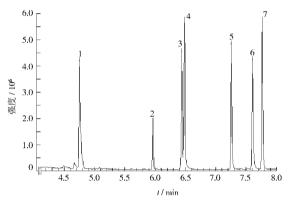
2.2 萃取头的选择


由于萃取纤维的极性和厚度不同 对待测物的 富集作用也不同 因而会产生不同的萃取效果。该 试验在萃取温度 $50~^{\circ}$ 、萃取时间 $30~^{\circ}$ min 的条件下 考察了 PDMS($100~^{\circ}$ μm)、PDMS($70~^{\circ}$ μm)、PEG – DVB($65~^{\circ}$ μm)、PA($85~^{\circ}$ μm) $4~^{\circ}$ 种萃取头对 $24~^{\circ}$ ϒVOCs、7 种 OPPs 和 $17~^{\circ}$ 种 OCPs 的萃取效率。比较色谱峰面积后,该试验选择 $85~^{\circ}$ μm PA 萃取头,对于大部分待测物的萃取效率最佳。

2.3 萃取温度与萃取时间

配制 24 种 SVOCs、7 种 OPPs 和 17 种 OCPs 混合标准溶液 ,分别在 20 $\,^\circ$ C、30 $\,^\circ$ C、40 $\,^\circ$ C、50 $\,^\circ$ C、60 $\,^\circ$ C、70 $\,^\circ$ C 的萃取温度下 经涂有 85 $\,^\circ$ μm PA 的固相微萃取头萃取后直接 GC/MS 测定。试验结果表明 ,当萃取温度为 50 $\,^\circ$ C 时 ,大部分化合物的萃取效率最高。

配制 24 种 SVOCs、7 种 OPPs 和 17 种 OCPs 混合标准溶液 分别经涂有 85 μ m PA 的固相微萃取 头萃 取 5 \min 、10 \min 、15 \min 、20 \min 、30 \min 、40 \min 、50 \min 、60 \min 后直接 GC/MS 测定。试验结果表明 ,色谱响应值随萃取时间延长持续增加 ,


— 39 —

1—苯胺;2—硝基苯;3—1,3,5—三氯苯;4—2,4—二氯酚;5—1,2,4—三氯苯;6—1,2,3—三氯苯;7—对硝基氯苯;8—间硝基氯苯;9—邻硝基氯苯;10—1,2,3,5—四氯苯;11—1,2,4,5—四氯苯;12—2,4,6—二氯酚;13—1,2,3,4—四氯苯;14—对二硝基苯;15—间二硝基苯;16—邻二硝基苯;17—2,4—二硝基甲苯;18—2,4—二硝基氯苯;19—1,3,5—三硝基甲苯;20—六氯苯;21—五氯酚;22—邻苯二甲酸二丁酯;23—邻苯二甲酸二(乙基己基)酯;24—苯并(a)芘。

图 1 24 种 SVOCs 的总离子流

Fig. 1 TIC of 24 semi-volatile organic compounds

1—敌敌畏; 2—内吸磷-O; 3—内吸磷-S; 4—乐果; 5—甲基对硫磷; 6—马拉硫磷; 7—对硫磷。

图 2 7 种 OPPs 的总离子流

Fig. 2 TIC of 7 organphosphorous pesticides

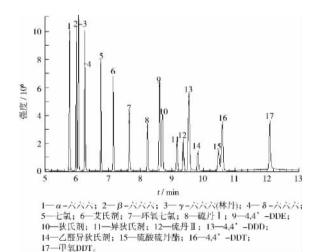


图 3 17 种 OCPs 的总离子流

Fig. 3 TIC of 17 organchlorine pesticides

在 60 min 内仍达不到萃取平衡。虽然未达到萃取平衡,但萃取 30 min 后,大部分化合物的色谱响应值随萃取时间延长仅缓慢增加。在保证方法灵敏度的前提下,应满足应急工作的需要,尽量缩短分析时间,该试验选择萃取 30 min。

2.4 溶液中离子强度的影响

增加水相中的离子强度,可以降低有机物在水相中的溶解度,利于有机物被吸附,从而提高探头的萃取效率。在上述优化的试验条件下,考察了氯化钠对萃取效率的影响。配制 48 种 SVOCs 混合标准溶液,分别添加 0 g/L、100 g/L、150 g/L 和饱和的氯化钠,充分混匀后依次分析。结果表明,加入氯化钠至溶液饱和后,大部分化合物的萃取效率都有明显提高。因此,该试验选择加入氯化钠至溶液饱和。

2.5 解吸温度与解吸时间

探头上吸附的待测物质如果未解吸完全 则会影响方法灵敏度 并给后续样品分析带来污染。考察了解吸温度在 $230~\%\sim290~\%$ 范围内的萃取效率 最终选择解吸温度为 250~%。在 24~种 SVOCs、7 种 OPPs 和 17 种 OCPs 混合标准溶液中萃取 30~min 萃取涂层在 GC/MS 进样口于 250~% 解吸 5~min 后 未发现残留 证明在 250~% 解吸 5~min 足以将待测物质解吸完全。

2.6 搅拌速度

在 SPME 萃取过程中,常需搅拌试样,使待测组分分布均一化,更快地达到分配平衡。分别考察了 100 r/min、300 r/min、500 r/min、700 r/min、

900 r/min的搅拌速度对萃取的影响,结果表明,对于同一种待测物质,在 SPME 萃取条件都相同的前提下,不搅拌或低速搅拌状态下的吸附量小,因为待测物在液相的扩散速度较慢,而且固相表面附有一层静止水膜,待测物难以通过静止的水层扩散至萃取头表面;高速搅拌时的吸附量大,因为静止水层被破坏后,吸附量有较大的提高,但萃取体系内的磁转子转动不平稳,带来的不确定因素会影响试验的重现性。因此,该试验选择磁转子转动较均衡的中等搅拌速度 500 r/min。

2.7 仪器分析条件优化

针对 24 种 SVOCs、7 种 OPPs 和 17 种 OCPs , 分别采取 3 种相应的仪器分析条件 最大程度地缩短了样品测试时间 取得了较好的分离效果。若将 48 种待测物混合分析 ,在分离效果良好的情况下 ,分析耗时约 40 min ,而采用该方法分别优化分析 ,仅耗时 10 min ~ 25 min。在实际应急监测过程中 ,可针对不同类型的污染物质 ,采取相应的分析条

件,以便在最短时间内得到监测结果。

2.8 方法线性与检出限

将 24 种 SVOCs、7 种 OPPs 和 17 种 OCPs 混合标准溶液分别稀释为 1.00 $\mu g/L$ 、5.00 $\mu g/L$ 、10.0 $\mu g/L$ 、20.0 $\mu g/L$ 、40.0 $\mu g/L$ 标准水溶液系列 在上述优化的条件下测定。以峰面积对应质量浓度进行线性回归计算 ,各组分线性关系良好 ,相关系数见表 1。

连续分析 7 个接近于检出限浓度的标准溶液 $(1.00~\mu g/L)$,按 MDL = Ks/b 计算各组分的检出限 结果见表 1。式中 K 为置信系数 K = 3; s 为重复测定 7 次的标准偏差; b 为标准曲线回归方程的斜率。

2.9 精密度与加标回收试验

在所选定的分析条件下 通过空白水样加标回 收试验(加标 $1.00~\mu g/L$) 确定方法的精密度与准确性 结果见表 $1.00~\mu g/L$

表 1 24 种 SVOCs、7 种 OPPs 和 17 种 OCPs 的相关系数、检出限、精密度与加标回收试验结果 Table 1 Correlation coefficient, method detection limits, relative standard deviation and

recovery of 24 kinds of SVOCs , 7 kinds of OPPs and 17 kinds of OCPs

	中文名称	相关系数	检出限ρ/(μg•L ⁻¹)	RSD/%	回收率/%
1	苯胺	0.997 6	0.15	7.6	75.5
2	硝基苯	0.9962	0.11	9.2	76.5
3	1 3 5 - 三氯苯	0.9989	0.12	8.5	81.7
4	2 4-二氯酚	0.9929	0.12	7.6	89.5
5	1 2 4 - 三氯苯	0.9922	0.15	8.4	82.6
6	1 2 3 - 三氯苯	0.9922	0.17	8.3	82.1
7	对硝基氯苯	0.9977	0.18	9.2	74.4
8	间硝基氯苯	0.998 3	0.18	9.1	78.9
9	邻硝基氯苯	0.999 3	0.17	8.8	76.2
10	1 2 3 5 - 四氯苯	0.9957	0.16	9.3	79.3
11	1 2 4 5 - 四氯苯	0.995 8	0.16	8.4	78.5
12	2 4 6 - 三氯酚	0.9914	0.13	7.5	95.8
13	1 2 3 4 - 四氯苯	0.992 5	0.14	9.1	78.3
14	对二硝基苯	0.996 3	0.15	8.5	65.8
15	间二硝基苯	0.993 0	0.15	10.0	61.8
16	邻二硝基苯	0.997 0	0.15	9.4	59.7
17	2 A-二硝基甲苯	0.997 6	0.19	9.7	58.1
18	2 🗚 – 二硝基氯苯	0.997 2	0.16	9.5	63.9
19	1 3 5 - 三硝基甲苯	0.992 5	0.27	7.8	51.0
20	六氯苯	0.9918	0.19	6.9	67.2
21	五氯酚	0.9967	0.28	11.5	65.4
22	邻苯二甲酸二丁酯	0.993 7	0.38	14.3	56.9
23	邻苯二甲酸二(乙基己基)酯	0.998 2	0.39	12.8	90.9
24	苯并(a) 芘	0.993 0	0.26	9.5	78.2
25	敌敌畏	0.995 8	0.38	12.6	85.6
26	内吸磷 - O	0.998 0	0.19	7.2	86.5

— 41 —

4± ==

序号	中文名称	相关系数	检出限 ρ/(μg • L ⁻¹)	RSD/%	回收率/%
27	内吸磷 – S	0.994 5	0.14	6.5	91.7
28	乐果	0.9944	0.12	9.6	98.5
29	甲基对硫磷	0.997 5	0.25	10.4	92.6
30	马拉硫磷	0.997 9	0.18	8.9	92.1
31	对硫磷	0.9908	0.17	11.4	94.4
32	$\alpha - \overrightarrow{\wedge} \overrightarrow{\wedge} \overrightarrow{\wedge}$	0.994 1	0.19	3.9	82.6
33	β – $\dot{\wedge}\dot{\wedge}\dot{\wedge}$	0.9906	0.19	4.0	95.7
34	γ - 六六六(林丹)	0.991 2	0.18	3.8	96.2
35	δ – $\dot{\wedge}\dot{\wedge}\dot{\wedge}$	0.990 1	0.20	6.2	94.2
36	七氯	0.993 1	0.18	6.4	94.5
37	艾氏剂	0.990 1	0.13	7.3	83.8
38	环氧七氯	0.993 5	0.16	4.1	97.0
39	硫丹Ⅰ	0.9942	0.17	3.4	88.3
40	4 A´- DDE	0.997 2	0.36	4.5	96.6
41	狄氏剂	0.994 5	0.15	7.4	95.8
42	异狄氏剂	0.995 5	0.13	8.1	88.3
43	硫丹Ⅱ	0.991 5	0.12	8.5	95.8
44	4 <i>A</i> ´- DDD	0.992 0	0.26	10.1	81.8
45	乙醛异狄氏剂	0.994 3	0.13	8.4	89.7
46	硫酸硫丹酯	0.998 6	0.17	8.7	88.1
47	4 <i>A</i> ´- DDT	0.998 4	0.14	10.5	83.9
48	甲氧 DDT	0.992 1	0.15	11.9	91.0

3 结语

建立了车载式 GC/MS 结合 SPME 前处理技术测定水体中 SVOCs 的方法 SPME 前处理技术简化了现场样品处理程序 ,车载式 GC/MS 可在现场对被测物质准确定性和定量。该方法在污染事故现场能快速、有效地对 24 种 SVOCs、7 种 OPPs 和 17种 OCPs 定性和定量 ,具有相关性好、检出限低、精密度好、准确度高等特点 ,适用于水体中 SVOCs 的现场应急监测工作。

[参考文献]

- [1] 刘耀龙,陈振楼,毕春娟,等.中国突发性环境污染事故应急监测研究[J].环境科学与技术 2008 31(12):116-120.
- [2] 吴玉萍 胡涛 赵毅红. 我国环境污染突发事件应急管理亟待 完善[J]. 中国发展观察 2006(1):31-32.
- [3] 周雯 汪连生. GC MS 法测定饮用水源水中半挥发性有机物[J]. 中国环境监测 2007 23(1):15-17.
- [4] 陈正夫 汪向明 楼成林. GC MS 法定量测定工业废水中半 挥发性有机物[J]. 上海环境科学 ,1995 ,14(3):22 -25.
- [5] 黄敏 唐莺 沈咏洁. GC MS/SIM 法测定地表水中半挥发性 有机化合物[J]. 净水技术 2008 27(2):66-69.
- [6] 孙艳. 生活饮用水中半挥发性有机物的测定[J]. 中国卫生检验杂志 2007,17(2):282-283.

- [7] 顾文奎,慕毓.水中6种有机磷农药的毛细管柱气相色谱测定法[J].环境与健康杂志 2007 24(4):254-255.
- [8] 康跃惠 涨干 盛国英 等. 固相萃取法测定水源水中的有机 磷农药[J]. 中国环境科学 2000 20(1):1-4.
- [9] 邰超 ,齐永安 ,庞玉娟 ,等. 固相微萃取 气相色谱法测定水中痕量有机氯农药[J]. 环境监测管理与技术 ,2007 ,19(5): 26-29.
- [10] 王新平 杨云 森伟 等. 固相微萃取 气相色谱 质谱联用分析环境水样中痕量有机磷农药[J]. 分析试验室 2003 22 (5):9-13.
- [11] 帅琴 杨薇 郑岳君 等. 固相微萃取与气相色谱 质谱联用测定有机磷杀虫剂的残留量[J]. 色谱 ,2003 ,21(3): 273
- [12] SCHEYER A ,MORVILLE S ,MIRABEL P ,et al. Analysis of trace levels of pesticides in rainwater using SPME and GC-tandem mass spectrometry [J]. Anal Bioanal Chem 2006 ,384(2): 475 – 487.
- [13] GONZALEZ-RODRIGUEZ M J LIEBANAS F J A FRENICH A G et al. Determination of pesticides and some metabolites in different kinds of milk by solid-phase microextraction and low-pressure gas chromatography-tandem mass spectrometry [J]. Anal Bioanal Chem 2005 382(1):164-172.
- [14] 李春玉 戴玄吏. 固相微萃取 气相色谱法测定水源地水中 SVOC[J]. 环境监测管理与技术 2010 22(2):51 54.