离子色谱法测定地表水中总氮

张晓云,郭小燕 (张掖市环境监测站,甘肃 张掖 734000)

摘 要:采用碱性过硫酸钾消解水样,OnGuard II Ba柱萃取、过滤,去除消解液中大量硫酸盐,离子色谱法测定地表水中总氮含量。试验表明,方法在 $0 \text{ mg/L} \sim 20.0 \text{ mg/L}$ 之间线性良好,相关系数 r 为 0.999 4,方法检出限为 0.007 mg/L。该方法与国标法同时测定标准物质,测定值均在定值范围内,6 次平行测定结果的 RSD 分别为 2.3% 和 1.8%,地表水样的加标回收率为 $95.7\% \sim 105\%$ 。实际水样的测定结果与国标法比对,无明显差异。

关键词:总氮;离子色谱法;地表水

中图分类号: O657.7 * 5

文献标识码:B

文章编号:1006-2009(2014)04-0051-03

Determination of Total Nitrogen in Surface Water by Ion Chromatography

ZHANG Xiao-yun, GUO Xiao-yan

(Environmental Monitoring Station of Zhangye, Zhangye, Gansu 734000, China)

Abstract: The total nitrogen content in surface water was determined by ion chromatography after alkaline potassium persulfate digestion followed by OnGuard II Ba column to eliminate a mass of sulfate. Tests showed that the good linearity was obtained between 0 mg/L ~ 20.0 mg/L, with the correlation coefficient was 0.999 4. The method detection limit come to be 0.007 mg/L. Simultaneous determination of standard substance using the current method and the national standard method, the determined values were both in the range of customized. The RSDs of 6 parallel determination were 2.3% and 1.8%, and the spiked recovery of surface water sample ranged from 95.7% ~ 105%. There were no significant difference between the current method and the national standard method for determining real samples.

Key words: Total nitrogen; Ion chromatography; Surface water

总氮是引起水体富营养化的主要原因,也是衡量水质的重要指标。地表水中总氮浓度过高,致使藻类过度繁殖,水体透明度降低,水质甚至恶化至有害程度,因此准确测定水体中总氮十分重要[1]。碱性过硫酸钾氧化 - 紫外分光光度法是测定水中总氮的国家标准方法^[2],然而该方法操作繁琐,且空白值偏高,影响测定结果^[3-4]。离子色谱法测定水中总氮已有文献报道,可消解过程中产生的大量硫酸根离子会对色谱柱造成影响^[5]。今采用碱性过硫酸钾消解地表水中含氮化合物,用 OnGuard Ⅱ Ba 柱萃取、过滤,去除消解液中硫酸根离子后,进入离子色谱仪用阴离子分离柱分离,测定地表水中总氮^[6]。

1 试验

1.1 主要仪器与试剂

ICS-900型离子色谱仪, IonPac AS23型阴离子分析柱, AG23型阴离子保护柱, ASRS-300型自动再生抑制器,美国戴安公司; 医用高压蒸汽消毒器; OnGuard II Ba柱, 美国赛默飞世尔公司。

1000 mg/L 总氮标准储备液,总氮标准样品 (1.22±0.09) mg/L,国家标准物质中心; Na₂CO₃基准试剂; NaHCO₃(优级纯); 碱性过硫酸钾溶液:取4g过硫酸钾和1.5g NaOH 溶解于去离子水中,稀释至100 mL,备用。试验用水为去离子水。

收稿日期:2013-10-25;修订日期:2014-06-22

作者简介:张晓云(1975—),男,甘肃张掖人,工程师,本科,从 事环境临测工作。

1.2 色谱条件

抑制器抑制电流 25 mA;进样体积 25 μL;淋洗液流量 1.00 mL/min; 淋洗液: 4.50 mmol/L 的 Na_2CO_3 和 0.800 mmol/L 的 $NaHCO_3$ 混合溶液。

1.3 水样预处理

经 0.45 μm 微孔滤膜过滤后的水样保存于清洁玻璃瓶中,4 ℃下保存不得超过 24 h。取 25 mL水样置于 50 mL 玻璃磨口具塞比色管中,加 5 mL碱性过硫酸钾。将比色管置于医用高压蒸汽消毒器中,加热,使压力达到 107.9 kPa ~ 137.3 kPa, 120 ℃ ~124 ℃ 下消解 30 min。消解完毕,冷却,取出比色管用去离子水定容至 50 mL,经 OnGuard II Ba 柱过滤后,用离子色谱仪测定。

2 结果与讨论

2.1 淋洗液浓度和抑制电流的选择

配制 4.00 mmol/L Na₂CO₃ + 0.50 mmol/L NaHCO₃、4.00 mmol/L Na₂CO₃ + 0.80 mmol/L NaHCO₃、4.50 mmol/L Na₂CO₃ + 0.80 mmol/L NaHCO₃、4.50 mmol/L Na₂CO₃ + 1.00 mmol/L NaHCO₃系列淋洗液,设定流量为 1.00 mL/min,分析 2.00 mg/L 的总氮标样。试验表明:当淋洗液浓度过低时,离子出峰时间较长,灵敏度低,且硝酸根离子不易从分析柱中洗脱,残留的硝酸根离子会影响下一次测定,出现叠加峰形;当淋洗液浓度较高时,出峰时间虽然缩短,但分离效果差。综合考虑分离度和保留时间,选择 4.50 mmol/L Na₂CO₃ + 0.80 mmol/L NaHCO₃ 的淋洗液体系,既节省时间,又能保证良好的分离效果和较高的灵敏度。

考察抑制电流对总氮检测灵敏度的影响,结果表明:15 mA的抑制电流不能完全抑制背景电导;采用 35 mA的抑制电流,检测灵敏度下降;选用 25 mA的抑制电流,结果令人满意。

2.2 共存离子的影响及消除

消解完毕,水样中总氮转化成硝酸盐,过硫酸钾则被还原成硫酸盐,大量硫酸盐的存在会对离子色谱柱造成伤害,缩短色谱柱的使用寿命。On-Guard II Ba 柱的填料为 Ba²,型高容量强酸型阳离子交换树脂,根据生成沉淀的原理可去除消解液中绝大部分硫酸根离子。一次性使用 Ba 柱价格便宜,不会增加太高的分析成本。水中硝酸盐与多种共存阴离子可在色谱柱中得到较好分离,对测定基本无影响。

2.3 校准曲线与方法检出限

用纯水将总氮标准储备液逐级稀释,配制成 0 mg/L、0.500 mg/L、2.00 mg/L、6.00 mg/L、10.0 mg/L、20.0 mg/L 的标准系列,经 1.3 步骤处 理后分别测定。以峰高为纵坐标,质量浓度为横坐标,绘制校准曲线。回归方程为 y=0.539x-0.004,相关系数 r 为 0.999 4。

按照样品分析的全部步骤,连续分析 7 个 0.500 mg/L 标准样品,得到测定结果的标准偏差 s 为 0.002 27 mg/L。按照 $\text{MDL} = s \times t_{(n-1,0.99)}$ 计算方法检出限 $t_{(n-1,0.99)}$ 为置信度 $t_{(n-1,0.99)}$ 为置信度 $t_{(n-1,0.99)}$ 为置信度 $t_{(n-1,0.99)}$ 为 $t_{(n-1,0.99$

2.4 准确度与精密度

用离子色谱法和国标法分别测定(1.22 ± 0.09)mg/L的总氮标准样品,6次平行试验的结果见表1。

由表 1 可知,2 种方法的测定值均在定值范围内,结果无明显差异,说明离子色谱法测定结果的 重现性和准确度良好,符合分析测试要求。

对地表水样进行总氮标准溶液的加标回收试验,按1.3步骤处理后用离子色谱仪测定,结果见表2。

表 1 两种方法测定的结果

Table 1 Determination of the results of two methods

測定方法	测定值 ρ/(mg·L ⁻¹)					RSD/%	
离子色谱法	1.22	1.17	1.20	1.18	1.23	1.24	2.3
国标法	1.26	1.28	1.25	1.24	1.29	1.23	1.8

表 2 加标回收试验结果

Table 2 Results of recovery of standard addition

水样	本底值 p/ (mg・L ⁻¹)	加标量 p/ (mg·L ⁻¹)	測定值 p/ (mg・L ⁻¹)	回收率 /%
1	0. 243	1.00	1.20	95.7
2	0.315	1.00	1.30	98.5
3	0.296	1.00	1.31	101
4	0.402	1.00	1.45	105

2.5 地表水样品的测定

取5组地表水样,采用碱性过硫酸钾氧化消解,经 OnGuard Ⅱ Ba 柱萃取、过滤,离子色谱法测定总氮,与国标法测定值比对,结果见表3。由表3可见,2 种方法测定结果的相对偏差 < 6.0%,说明离子色谱法满足分析测试要求。

表 3 地表水样测定结果

Table 3 The determination results of surface water samples

水样 -	测定值 p/(測定值 ρ/(mg・L ⁻¹)		
	离子色谱法	国标法	一 相对偏差/%	
1	0.302	0.312	1.6	
2	0.232	0.232	0	
3	0.440	0.420	2.3	
4	0.265	0.265	0	
5	0.382	0.362	2.7	

3 结语

采用碱性过硫酸钾消解水样,OnGuard II Ba 柱萃取、过滤,去除硫酸根离子,用离子色谱法测定 水中总氮,操作简便、快捷,能有效解决国标法中过 量碱性过硫酸钾对吸光度造成干扰和波长测定重 现性的问题,避免空白过大对测定的影响,且该方 法对试剂要求不高。OnGuard II Ba 柱萃取、过滤, 去除消解液中大量硫酸盐,避免对色谱柱造成伤 害。离子色谱法测定水中总氮回收率高、重复性 好、检出限低,经实际操作证明,能满足水中总氮的 监测要求。

[参考文献]

- [1] 国家环境保护总局《水和废水监测分析方法》编委会. 水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社,2002.
- [2] 国家环境保护局. GB 11894-89 水质 总氮的测定 碱性 过硫酸钾消解紫外分光光度法[S]. 北京:中国标准出版 社.1989.
- [3] 齐文启,陈光,孙宗光,等. 总磷、总氮监测中存在的有关问题 [J]. 中国环境监测,2005,21(2):31-35.
- [4] 任妍冰,曹雷,杨慧林,等.碱性过硫酸钾紫外光度法测定水中总氮时影响空白值的因素[J]. 江苏环境科技,2008(S1): 48-50.
- [5] 康勤书,周永强,陈浩. $K_2S_2O_8$ 离子色谱法测定水中总氮 量[J]. 分析实验室,2008,27(5):112 -114.
- [6] 牟世芬,刘克纳,丁晓静. 离子色谱方法及应用[M]. 2 版. 北京: 化学工业出版社,2005; 1-7.
- [7] 环境保护部. HJ 168-2010 环境监测 分析方法标准制修 订技术导则[S]. 北京:中国环境科学出版社,2010.

本栏目责任编辑 吴珊

(上接第41页)

表 4 发酵液中 7 种有机酸加标回收率

Table 4 Recoveries of the 7 organic acids in fermentation broth

	_			
化合物	本底值 p/ (mg·L ⁻¹)	加标量 ρ/ (mg·L ⁻¹)	测定值 p/ (mg・L ⁻¹)	回收率
乳酸	17.5	21.3	36.8	90.6
乙酸	41.5	20.7	60.9	93.7
丙酸	31.3	14.4	44.5	91.7
异丁酸	12.9	23.5	36.4	100
正丁酸	2.98	2.00	4.88	95.0
正戊酸	13.7	13.2	28.1	109
异戊酸	1.83	2.00	3.73	95.0

3 结语

采用离子色谱法可同时测定污泥与餐厨垃圾 联合厌氧发酵液中7种有机酸,操作简便,测定准确、快速,对于深入研究污泥与餐厨垃圾联合厌氧 发酵机理具有重要意义。

[参考文献]

- [1] CHU C H, XU K Q, LI Y Y et al. Hydrogen and methane potential based on the nature of food waste materials in a two-stage thermophilic fermentation process [J]. International Journal of Hydrogen Energy, 2012, 37 (14):10611-10618.
- [2] NOIKE T, KO I B, YOKOYAMA S, et al. Continuous hydrogen production from organic waste[J]. Water Science and Technolo-

- gy, 2005, 52(1-2): 145-151.
- [3] CAVINATO C, GIULIANO A, BOLZONELLA D, et al. Biohythane production from food waste by dark fermentation coupled with anaerobic digestion process: A long-term pilot scale experience[J]. International Journal of Hydrogen Energy, 2012, 37 (15):11549-11555.
- [4] 邵永怡. 气相色谱法测定污泥酸化水解工程中产生的挥发性脂肪酸[J]. 分析仪器,2008(6):15-18.
- [5] 张浩勤,张伟,张翔,等.气相色谱法测定牛粪厌氧发酵液中挥发性脂肪酸[J].郑州大学学报(工学版),2007,28(2):51-53.
- [6] MATAIX E, LUQUE DE CASTRO M D. Determination of L-(-)-malic acid and L-(+)-lactic acid in wine by a flow injection-dialysis-enzymic derivatisation approach [J]. Analytica Chimica Acta, 2001, 428(1):7-14.
- [7] 孙绪顺,褚春凤,李春杰. 反相高效液相色谱测定厌氧反应上 清液中挥发性脂肪酸[J]. 净化技术,2009,28(5);64-66.
- [8] 郑志,姜绍通,潘丽军,等. 反相高效液相色谱法测定发酵液中乳酸的含量[J]. 食品科学,2003,24(12):89-91.
- [9] 李建,陈可泉,黄秀梅,等. 厌氧发酵有机酸体系中 NAD⁺和 NADH 测定方法的建立[J]. 食品科技,2008,33(12):254-257.
- [10] 法芸,张聪,杨海燕,等. 离子色谱法同时测定嗜热厌氧菌发酵液中的有机酸与无机阴离子[J]. 海洋科学,2010,34 (11);23-26.
- [11] 牟豪杰,孟庆翔,任丽萍,等.离子色谱法同时测定牛瘤胃液中乳酸和挥发性脂肪酸含量[J].理化检验(化学分册),2009,45(1);52-54.
- [12] 张月琴,吴昊. 离子色谱法测定低温 F-T 合成水相产物中小分子有机酸[J]. 石油炼制与化工,2009,40(6):51-53.